Olympic Toán quốc tế (International Mathematical Olympiad, thường được viết tắt là IMO) là một kì thi Toán học cấp quốc tế hàng năm dành cho học sinh trung học phổ thông.
Lịch sử
Kì thi IMO đầu tiên được tổ chức tại Rumani năm 1959 với sự tham gia của 7 quốc gia Đông Âu là chủ nhà Rumani, Bulgaria, Tiệp Khắc, Đông Đức, Hungary, Ba Lan và Liên Xô. Trong giai đầu, IMO chủ yếu là cuộc thi của các quốc gia thuộc hệ thống xã hội chủ nghĩa và địa điểm tổ chức cũng chỉ trong phạm vi các nước Đông Âu. Bắt đầu từ thập niên 1970, số lượng các đoàn tham gia bắt đầu tăng lên nhanh chóng và IMO thực sự trở thành một kì thi quốc tế về Toán dành cho học sinh.
Cho đến nay kì thi được tổ chức liên tục hàng năm, trừ duy nhất năm 1980. Kì IMO có số lượng đoàn tham gia đông đảo nhất tính đến IMO 2007 chính là kì IMO 2007 tổ chức tại Hà Nội, Việt Nam với 93 đoàn tham dự, trong đó có sự góp mặt lần đầu của đoàn Campuchia, Ả Rập Saudi và sự trở lại sau nhiều năm vắng bóng của đoàn Bắc Triều Tiên.
Mỗi đoàn tham dự được phép có tối đa 6 thí sinh, một trưởng đoàn, một phó đoàn và các quan sát viên. Theo quy định, thí sinh tham gia phải dưới 20 tuổi và trình độ không được vượt quá cấp trung học phổ thông (secondary school hay high school trong tiếng Anh, hay lycée trong tiếng Pháp), vì vậy một thí sinh có thể tham gia tới 5 hoặc 6 kì IMO, riêng với Việt Nam do quy định của việc chọn đội tuyển, một thí sinh chỉ tham dự được nhiều nhất là hai kì.
Cách thức ra đề, thi và chấm thi
Mỗi bài thi IMO bao gồm 6 bài toán, mỗi bài tương đương tối đa là 7 điểm, có nghĩa là thí sinh có thể đạt tối đa 42 điểm cho 6 bài. 6 bài toán này sẽ được giải trong 2 ngày liên tiếp, mỗi ngày thí sinh giải 3 bài trong thời gian 270 phút.
Các bài toán được lựa chọn trong các vấn đề toán học sơ cấp, bao gồm 4 lĩnh vực hình học, số học, đại số và tổ hợp. Bắt đầu từ tháng 3 hàng năm, các nước tham gia thi được đề nghị gửi các đề thi mà họ lựa chọn đến nước chủ nhà, sau đó một ban lựa chọn đề thi của nước chủ nhà sẽ lập ra một danh sách các bài toán rút gọn bao gồm những bài hay nhất, không trùng lặp đề thi IMO các năm trước hoặc kì thi quốc gia của các nước tham gia, không đòi hỏi kiến thức toán cao cấp, không quá khó hoặc quá dễ nhưng yêu cầu được thí sinh phải vận dụng hết khả năng suy luận và kiến thức toán được học. Một vài ngày trước kì thi, các trưởng đoàn sẽ bỏ phiếu lựa chọn 6 bài chính thức, chính họ cũng sẽ là người dịch đề thi sang tiếng nước mình để thí sinh có thể giải toán bằng tiếng mẹ đẻ, sau đó các vị trưởng đoàn sẽ được cách ly hoàn toàn với các thí sinh để tránh gian lận.
Bài thi của thí sinh sẽ được ban giám khảo và trưởng đoàn của thí sinh đó chấm song song, sau đó hai bên sẽ hội ý để đưa ra kết quả cuối cùng. Giám khảo và trưởng đoàn đều có thể phản biện cách chấm của nhau để điểm bài thi đạt được là chính xác nhất. Nếu hai bên không thể đi tới đồng thuận thì người quyết định sẽ là trưởng ban giám khảo và giải pháp cuối cùng là tất cả các trưởng đoàn bỏ phiếu. Riêng bài thi của thí sinh nước chủ nhà sẽ do giám khảo đến từ các nước có đề thi được chọn chấm.
Giải thưởng
Tại IMO việc xét giải chỉ là cho cá nhân từng thí sinh tham gia thi, còn việc xếp hạng thành tích các đoàn đều do các nước tham gia tự tính toán và không có ý nghĩa chính thức.
Giải thưởng của IMO bao gồm huy chương vàng, huy chương bạc và huy chương đồng được trao theo điểm tổng cộng mà thí sinh đạt được. Số thí sinh được trao huy chương là khoảng một nửa tổng số thí sinh, điểm để phân loại huy chương sẽ theo nguyên tắc tỉ lệ thí sinh đạt huy chương vàng, bạc, đồng sẽ là 1:2:3. Các thí sinh không giành được huy chương nhưng giải được trọn vẹn ít nhất 1 bài (7/7 điểm) sẽ được trao bằng khen.
Ngoài ra, ban tổ chức IMO còn có thể trao các giải thưởng đặc biệt cho cách giải cực kì sáng tạo hoặc tổng quát hóa vấn đề nêu ra trong bài toán. Giải này phổ biến trong thập niên 1980 nhưng gần đây ít được trao hơn, lần cuối cùng giải thưởng đặc biệt được trao là năm 2005. Thí sinh đoàn Việt Nam từng đạt giải thưởng này là Lê Bá Khánh Trình tại IMO 1979.
Nguồn: diendantoanhoc.net
Lịch sử
Kì thi IMO đầu tiên được tổ chức tại Rumani năm 1959 với sự tham gia của 7 quốc gia Đông Âu là chủ nhà Rumani, Bulgaria, Tiệp Khắc, Đông Đức, Hungary, Ba Lan và Liên Xô. Trong giai đầu, IMO chủ yếu là cuộc thi của các quốc gia thuộc hệ thống xã hội chủ nghĩa và địa điểm tổ chức cũng chỉ trong phạm vi các nước Đông Âu. Bắt đầu từ thập niên 1970, số lượng các đoàn tham gia bắt đầu tăng lên nhanh chóng và IMO thực sự trở thành một kì thi quốc tế về Toán dành cho học sinh.
Cho đến nay kì thi được tổ chức liên tục hàng năm, trừ duy nhất năm 1980. Kì IMO có số lượng đoàn tham gia đông đảo nhất tính đến IMO 2007 chính là kì IMO 2007 tổ chức tại Hà Nội, Việt Nam với 93 đoàn tham dự, trong đó có sự góp mặt lần đầu của đoàn Campuchia, Ả Rập Saudi và sự trở lại sau nhiều năm vắng bóng của đoàn Bắc Triều Tiên.
Mỗi đoàn tham dự được phép có tối đa 6 thí sinh, một trưởng đoàn, một phó đoàn và các quan sát viên. Theo quy định, thí sinh tham gia phải dưới 20 tuổi và trình độ không được vượt quá cấp trung học phổ thông (secondary school hay high school trong tiếng Anh, hay lycée trong tiếng Pháp), vì vậy một thí sinh có thể tham gia tới 5 hoặc 6 kì IMO, riêng với Việt Nam do quy định của việc chọn đội tuyển, một thí sinh chỉ tham dự được nhiều nhất là hai kì.
Cách thức ra đề, thi và chấm thi
Mỗi bài thi IMO bao gồm 6 bài toán, mỗi bài tương đương tối đa là 7 điểm, có nghĩa là thí sinh có thể đạt tối đa 42 điểm cho 6 bài. 6 bài toán này sẽ được giải trong 2 ngày liên tiếp, mỗi ngày thí sinh giải 3 bài trong thời gian 270 phút.
Các bài toán được lựa chọn trong các vấn đề toán học sơ cấp, bao gồm 4 lĩnh vực hình học, số học, đại số và tổ hợp. Bắt đầu từ tháng 3 hàng năm, các nước tham gia thi được đề nghị gửi các đề thi mà họ lựa chọn đến nước chủ nhà, sau đó một ban lựa chọn đề thi của nước chủ nhà sẽ lập ra một danh sách các bài toán rút gọn bao gồm những bài hay nhất, không trùng lặp đề thi IMO các năm trước hoặc kì thi quốc gia của các nước tham gia, không đòi hỏi kiến thức toán cao cấp, không quá khó hoặc quá dễ nhưng yêu cầu được thí sinh phải vận dụng hết khả năng suy luận và kiến thức toán được học. Một vài ngày trước kì thi, các trưởng đoàn sẽ bỏ phiếu lựa chọn 6 bài chính thức, chính họ cũng sẽ là người dịch đề thi sang tiếng nước mình để thí sinh có thể giải toán bằng tiếng mẹ đẻ, sau đó các vị trưởng đoàn sẽ được cách ly hoàn toàn với các thí sinh để tránh gian lận.
Bài thi của thí sinh sẽ được ban giám khảo và trưởng đoàn của thí sinh đó chấm song song, sau đó hai bên sẽ hội ý để đưa ra kết quả cuối cùng. Giám khảo và trưởng đoàn đều có thể phản biện cách chấm của nhau để điểm bài thi đạt được là chính xác nhất. Nếu hai bên không thể đi tới đồng thuận thì người quyết định sẽ là trưởng ban giám khảo và giải pháp cuối cùng là tất cả các trưởng đoàn bỏ phiếu. Riêng bài thi của thí sinh nước chủ nhà sẽ do giám khảo đến từ các nước có đề thi được chọn chấm.
Giải thưởng
Tại IMO việc xét giải chỉ là cho cá nhân từng thí sinh tham gia thi, còn việc xếp hạng thành tích các đoàn đều do các nước tham gia tự tính toán và không có ý nghĩa chính thức.
Giải thưởng của IMO bao gồm huy chương vàng, huy chương bạc và huy chương đồng được trao theo điểm tổng cộng mà thí sinh đạt được. Số thí sinh được trao huy chương là khoảng một nửa tổng số thí sinh, điểm để phân loại huy chương sẽ theo nguyên tắc tỉ lệ thí sinh đạt huy chương vàng, bạc, đồng sẽ là 1:2:3. Các thí sinh không giành được huy chương nhưng giải được trọn vẹn ít nhất 1 bài (7/7 điểm) sẽ được trao bằng khen.
Ngoài ra, ban tổ chức IMO còn có thể trao các giải thưởng đặc biệt cho cách giải cực kì sáng tạo hoặc tổng quát hóa vấn đề nêu ra trong bài toán. Giải này phổ biến trong thập niên 1980 nhưng gần đây ít được trao hơn, lần cuối cùng giải thưởng đặc biệt được trao là năm 2005. Thí sinh đoàn Việt Nam từng đạt giải thưởng này là Lê Bá Khánh Trình tại IMO 1979.
Nguồn: diendantoanhoc.net
Không có nhận xét nào:
Đăng nhận xét